Endogenous urokinase lacks antifibrotic activity during progressive renal injury.
نویسندگان
چکیده
Interstitial fibrosis is a universal feature of progressive kidney disease. Urokinase-type plasminogen activator (uPA) is thought to participate for several reasons: 1) uPA is produced predominantly in kidney, 2) its inhibitor plasminogen activator inhibitor-1 (PAI-1) is a strong promoter of interstitial fibrosis, whereas its receptor (uPAR) attenuates renal fibrosis, 3) uPA reduces fibrosis in liver and lung, and 4) uPA can activate hepatocyte growth factor (HGF), a potent antifibrotic growth factor. The present study tested the hypothesis that endogenous uPA reduces fibrosis severity by investigating the unilateral ureteral obstruction (UUO) model in wild-type (WT) and uPA-/- mice. Several outcomes were measured: renal collagen 3-21 days after UUO, macrophage accumulation (F4/80 Western blotting), interstitial myofibroblast density (alpha-smooth muscle actin immunostaining), and tubular injury (E-cadherin and Ksp-cadherin Western blotting). None of these measures differed significantly between WT and uPA-/- mice. uPA genetic deficiency was not associated with compensatory changes in renal uPAR mRNA levels, PAI-1 protein levels, or tissue plasminogen activator activity levels after UUO. Despite the known ability of uPA to activate latent HGF, immunoblotting failed to detect significant differences in levels of the active HGF alpha-chain and phosphorylated cMET (the activated HGF receptor) between the WT and uPA-/- groups. These findings suggest that the profibrotic actions of PAI-1 are uPA independent and that an alternative pathway must activate HGF in kidney. Finally, these results highlight a significant organ-specific difference in basic fibrogenic pathways, as enhanced uPA activity has been reported to attenuate pulmonary and hepatic fibrosis.
منابع مشابه
Renal tubulointerstitial fibrosis: common but never simple.
Regardless of etiology, all patients with chronic renal disease show a progressive decline in renal function with time. Fibrosis, so-called scarring, is a key cause of this pathophysiology. Fibrosis involves an excess accumulation of extracellular matrix (primarily composed of collagen) and usually results in loss of function when normal tissue is replaced with scar tissue. While recent major a...
متن کاملMicroRNA-214 antagonism protects against renal fibrosis.
Renal tubulointerstitial fibrosis is the common end point of progressive renal disease. MicroRNA (miR)-214 and miR-21 are upregulated in models of renal injury, but the function of miR-214 in this setting and the effect of its manipulation remain unknown. We assessed the effect of inhibiting miR-214 in an animal model of renal fibrosis. In mice, genetic deletion of miR-214 significantly attenua...
متن کاملHigh concentration but low biological activity of hepatocyte growth factor in patients with chronic renal failure
Hepatocyte growth factor (HGF) is a renotropic, antifibrotic and regenerative factor with cytoprotective effects that is produced by mesenchymal cells and shows high affinity to components of extra cellular matrix, such as heparan sulphate proteoglycan (HSPG), in healthy. Patients with chronic renal failure (CRF) suffer from a chronic inflammatory disorder. In order to assess the underlying mec...
متن کاملThe Role of Toll-Like Receptor 2 in Inflammation and Fibrosis during Progressive Renal Injury
Tissue fibrosis and chronic inflammation are common causes of progressive organ damage, including progressive renal disease, leading to loss of physiological functions. Recently, it was shown that Toll-like receptor 2 (TLR2) is expressed in the kidney and activated by endogenous danger signals. The expression and function of TLR2 during renal fibrosis and chronic inflammation has however not ye...
متن کاملTLR4 promotes fibrosis but attenuates tubular damage in progressive renal injury.
Toll-like receptors (TLRs) can orchestrate an inflammatory response upon activation by pathogen-associated motifs and release of endogenous stress ligands during tissue injury. The kidney constitutively expresses most TLRs, including TLR4. The function of TLR4 during the inflammation, tubular atrophy, and fibrosis that accompany progressive renal injury is unknown. Here, we subjected wild-type ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 293 1 شماره
صفحات -
تاریخ انتشار 2007